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Abstract We start from a classical statistical–mechanical theory for the internal
energy in terms of three- and four-body correlation functions g3 and g4 for homoge-
neous atomic liquids like argon, with assumed central pair interactions φ(ri j ). The
importance of constructing the partition function (pf) as spatial integrals over g3, g4
and φ is stressed, together with some basic thermodynamic consequences of such a
pf. A second classical example taken for two-body interactions is the so-called one-
component plasma in two dimensions, for a particular coupling strength treated by
Alastuey and Jancovici (J Phys (France) 42:1, 1981) and by Fantoni and Tellez (J Stat
Phys 133:449, 2008). Again thermodynamic consequences provide a particular focus.
Then quantum–mechanical assemblies are treated, again with separable many-body
interactions. The example chosen is that of an N -body inhomogeneous extended sys-
tem generated by a one-body potential energy V (r). The focus here is on the diagonal
element of the canonical density matrix: the so-called Slater sum S(r, β), related to
the pf by pf(β) = ∫ S(r, β)d�r , β = (kB T )−1. The Slater sum S(r, β) can be related
exactly, via a partial differential equation, to the one-body potential V (r), for specific
choices of V which are cited. The work of Green (J Chem Phys 18:1123, 1950), is
referred to for a generalization, but now perturbative, to two-body forces. Finally,
to avoid perturbation series, the work concludes with some proposals to allow the
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treatment of extended assemblies in which regions of long-range ordered magnetism
exist in the phase diagram. One of us (Z.D.Z.) has recently proposed a putative pf
for a three-dimensional (3D) Ising model, based on two, as yet unproved, conjectures
and has pointed out some important thermodynamic consequences of this pf. It would
obviously be of considerable interest if such a pf, together with conjectures, could be
rigorously proved.

Keywords Statistical–mechanical models · Many-body interactions ·
Partition functions · Thermodynamic consequences

1 Introduction

The purpose of this article is to discuss four statistical–mechanical models set out
in Sects. 2, 3, 4 and 5 below. In the first two models, which are, in principle, gov-
erned by the BBGKY statistical–mechanical hierarchy [1], the main focus will be on
higher-order particle correlation functions, eg three- and four-particle forms g3 and
g4. The relation of these functions to thermodynamically accessible quantities will be
emphasized. Then in Sect. 4, the quantal canonical density matrix [2] and its diagonal
element, the so-called Slater sum [3], will be the focus, for the case of an initially
uniform electron assembly which is made inhomogeneous by the introduction of a
one-body potential V (r). Section 5, plus the Appendix are concerned with Ising mod-
els, with particular emphasis on the partition function and the critical exponents for
the three-dimensional case [4].

With this brief introduction, we turn to the statistical–mechanical modeling of a clas-
sical monatomic liquid typified by argon. Here, it is certainly a useful approximation
to represent the many-body force field, which ultimately of course must be calculated
from the quantum–mechanical Schrödinger equation, as a sum of two-body central
terms, characterized by a density-independent pair potential φ(ri j ) acting between
atoms at separation ri j .

2 Statistical–mechanical model of a homogeneous classical liquid (eg argon)
with assumed central pair force

The statistical mechanics of a classical liquid such as argon, which we know to be
describable with good accuracy by such a central pair potential φ(ri j ), is subsumed
into the BBGKY hierarchy [1]. Writing the pair correlation function g(r) in terms of
the potential of mean force U (r), one has [5]

g(r) = exp

(

−U (r)

kB T

)

. (2.1)
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Then for a homogeneous classical liquid, the first member of the BBGKY hierarchy,
the so-called force equation reads [5]

− ∇| U (r12) = −∇|φ(r12)− ρ

∫
g3(r1, r2, r3)

g(r12)
∇| (φ(r13))dr3 (2.2)

where ρ denotes the atomic number density.
As stressed for example in the early work of Johnson and March [6], which was

brought to full fruition in the computer simulation studies of Reatto et al. [7], Eqs. 2.1
and 2.2 can be used to extract φ(r) from a ‘measured’ pair distribution function g(r),
which is accessible for argon say by neutron scattering [8].

2.1 Internal energy E characterized by higher-order particle correlation functions

In terms of the experimentally accessible [8] pair function g(r), the internal energy E
can be generated via the pair potential φ(r) introduced above using the volume-deriv-
ative relation

(
∂E

∂V

)

T
= −ρ

2

2

∫
∂

∂ρ
[ρg(r)]φ(r)dr (2.3)

But the density dependence of the pair function g(r) is related to the important three-
particle correlation function g3 entering the lowest-order hierarchical Eq. 2.2 for the
present homogeneous liquid example in the pair-force statistical–mechanical model
emphasized here. Specifically, an equation due to Schofield [9] then allows Eq. 2.3 to
be re-expressed as

(
∂E

∂V

)

T
= − ρ2

2S(0)

[∫
g(r)φ(r)dr + ρ

∫
{g3(r,S)− g(r)g(s)}φ(r)drdS

]

(2.4)

Here, the quantity S(0) denotes the long-wavelength limit of the liquid structure factor
S(q). In turn, this is linked to the pair function g(r) by Fourier transform, as

S(q) = 1 + ρ

∫
[g(r)− 1] exp(iq · r)dr (2.5)

Fluctuation theory connects S(0)with thermodynamically accessible quantities as [5]

S(0) = −ρkB T
1

V

(
∂V

∂P

)

T
. (2.6)
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2.2 Specific heat difference CP − CV related to the three-particle correlation
function g3

Prompted by the early study of Bratby, Gaskell and March (BGM) [10], we next use
Eq. 2.4, plus established thermodynamic relations, to relate the specific heat differ-
ence CP − CV to the three-particle correlation function g3. This latter quantity is of
quite central importance in the present statistical–mechanical model of a liquid such
as argon, due to the BBGKY hierarchical member (2.2).

BGM start from the relation [11]

CP − CV = − T

N

(
∂P

∂T

)2

V

(
∂V

∂P

)

T
. (2.7)

This is readily re-written in the form

CP − CV = 1

ρ2kB

(
∂P

∂T

)2

V

[

−ρkB T
1

V

(
∂V

∂P

)

T

]

. (2.8)

But from Zemansky [11], we have also

(
∂E

∂V

)

T
= T

(
∂P

∂T

)

V
− P. (2.9)

Using Eq. 2.9 to remove
(
∂P
∂T

)2
V from Eq. 2.8 then yields

CP − CV = S(0)

[
P

ρkB T
+ 1

ρkB T

(
∂E

∂V

)

T

]2

k B . (2.10)

Next we employ Eq. 2.4 involving g3 to remove (∂E/∂V )T from Eq. 2.10 to find

CP − CV

kB S(0)
=
{

1 − 2πρ

3kB T

∫
g(r)r3 ∂φ

∂r
dr − ρ

2kB T S(0)

×
[∫

g(r)φ(r)dr + ρ

∫
{g3(r,S)− g(r)g(s)}φ(r)drdS

]}2

(2.11)

where the virial result for the pressure P [5] has also been employed.
It is of interest at this point to note that early work of Schofield [9] employing

fluctuation theory allowed CV to be expressed in terms of g3 and the four-particle
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correlation function g4 in such a pair-force statistical–mechanical model as

CV = 3

2
kB + 1

kB T 2

[
1

2
ρ

∫
g(r)φ2(r)dr + ρ2

∫
g3(r,S)φ(r)φ(s)drdS

+ 1

4
ρ3
∫

{g4 (r,S, t)− g(r)g (|t − S|)}φ(r)φ (|t − S|) drdSdt

]

−
[
ρ
∫

g(r)φ(r)dr + 1
2ρ

2
∫ {g3(r,S)− g(r)}φ(r)drdS

]2

S(0)
(2.12)

The interested reader is referred to the work of Bratby et al. [10] on simple insu-
lating liquids like argon. Their numerical studies make it quite clear that to recover
experimental results for both CP −CV and CV alone involve truly major cancellations
between much larger individual terms in Eq. 2.11 for CP − CV and in Eq. 2.12 for
CV alone. This makes it apparent that these two central equations are very sensitive to
any approximations made in writing g3 and g4, given φ(r). Fortunately, the computer
simulation studies of Reatto et al. [7] have solved the hierarchical Eq. 2.2 without the
need for any such approximation to g3 in the exact model equations presented here.

2.3 Changes required in simple liquid metals such as Na and Be, due to density
dependence of pair potentials

The statistical–mechanical model above is appropriate to argon, with the assumption
that the central pair potential φ(r) is density independent. We wish to conclude this
section, as well as to introduce the next section, by referring briefly to simple liquid
metals such as Na and Be. These metals have been studied using electron theory by
Perrot and March [12,13]. In Ref. [12], the pair potential φ(r,ρ) thus obtained for Na
for a given density ρ is displayed in Fig. 2 where it is compared with that extracted
for the same density by Reatto et al. [7], using the hierarchical Eq. 2.2, with input
of the experimentally determined g(r), plus the use of computer simulation to avoid
approximations to the three-body correlation function g3. All the main features of the
density-dependent φ(r, ρ) obtained for Na using the statistical–mechanical model dis-
cussed above are reproduced by electron theory for the particular density ρ for which
the pair function g(r) is known. That the density dependence of φ(r) was important
in metals like Na and Be was stressed in the early work of Worster and March [14].

It is of interest here also to return to Be, for which Perrot and March [13] have
calculated φ(r,ρ) for a particular density ρ, again using electron theory. In Fig. 5 of
Ref. [13], for this chosen density, the pair potential φ(r,ρ) is shown to be crucially
different from φ(r) in the insulating liquid argon. For the liquid metal Be, electron
theory predicts a large repulsive ‘hump’ following the first minimum in φ(r,ρ), the
height of the hump being even larger than the depth of the first minimum. It will be
of considerable interest for the future to use this prediction of the pair potential in
Be to derive the pair function g(r) plus the three-body function g3 from the statis-
tical–mechanical model characterized by Eq. 2.2, employing of course the computer
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techniques set out by Reatto et al. [7] to avoid approximating g3 in terms of g(r),
using say the superposition approximation of Kirkwood [15].

Of course, Na liquid metal is a two-component mixture of Na+ ions and valence
electrons, and is therefore a ‘Coulomb liquid’ [16]. The simplest such metallic liquid is
the one-component plasma (OCP), and the above discussion leads us to treat immedi-
ately below such a OCP in two dimensions, using a statistical–mechanical model with
a ln (ri j ) interaction. For one coupling strength, the important three-body correlation
function g3 can be found analytically.

3 Statistical mechanical model of a two-dimensional (2D) Coulomb
one-component plasma for a specific coupling strength, plus an application
to 3D liquid metal Na

Jancovici et al. [17,18] solved the above model some time ago for a particular coupling
strength (see below for details). However, the model is of considerable current interest
[19] and has intimate connection with the three-body correlation function given some
prominence in the previous section. We shall therefore set out below (see also Rashid
et al. [20]) some results of this model which are especially relevant in the present
context.

The model under discussion in the first part of this section concerns a 2D classical
system of one species of charged particles immerged in a neutralizing background
and interacting via a 2D Coulomb potential (a realistic quantum–mechanical interac-
tion will then be introduced later for the 3D liquid metal Na). The 1D analogy of the
Coulomb case referred to above has been solved exactly, going back at very least to
the study of Edwards and Lenard [21].

Quite specifically, in 2D, the interaction potential φ(r) used by Jancovici [17] takes
the form φ(r) = −e2 ln(r/L) where L is a length scale and e is the charge on each of
the N identical particles. The excess free energy per particle in readily shown for this
model to take the form

Fexc

N
= −1

4
e2 ln(πρL2)+ f (T ). (3.1)

Therefore, it follows that the equation of state is given by

P =
(

kB T − 1

4
e2
)

ρ (3.2)

where ρ = N/(πR2) is the number density [17,18], with R the interparticle spacing.
As Jancovici et al. demonstrated, further information can be obtained at a particular
coupling strength� = e2/(kB T ),which can be characterized by a special temperature
T0 say given by T0 = e2/(2k B), i.e. � = 2. At T0, Eq. 3.1 becomes precisely

Fexc

N
= −1

4
e2 ln(πρL2)+ e2

[
1

2
− 1

4
ln(2π)

]

. (3.3)
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The important pair correlation function g(r) at � = 2 is then given by

g(r) = 1 − exp(−πρr2) (3.4)

In the present context, the key result for the three-particle correlation function at this
coupling strength is then [17,18,20]

g(r1, r2, r3) = 1 − exp
(
−πρr2

12

)
− exp

(
−πρr2

23

)
− exp

(
−πρr2

31

)

+ 2 exp

(

−1

2
πρ
(

r2
12 + r2

23 + r2
31

))

cos [2πρA (r1, r2, r3)] (3.5)

where A is the area [17] of the triangle formed by the particles (1, 2, 3).
Rashid et al. [20] have used the work in Refs. [17] and [18] to relate g3 to the density

dependence of the pair function (3.4). These workers also constructed the important
Ornstein–Zernike direct correlation function [5] c(r) in the above model at coupling
strength � = 2 (see also Hernando [22,23]). The so-called collective part [20] cc(r),
defined by cc = c − cP , where cP is defined, following Kumar et al. [24], by invoking
thermodynamic consistency, and now in d dimensions, as

cP (r) = −φ(r)
kB T

1

2drd−1

∂2

∂ρ∂r

[
ρ2rd g(r)

]
(3.6)

is found to only be important at small r . The potential contribution cP (r) is dominant
in c(r) outside an initial core region, for this particular coupling strength � = 2.

Solution of the force equation of the BBGKY hierarchy

We turn next to summarize the work of Golden et al. [25]. These authors demonstrate
that, provided the assumed pair potential φ(r) has a Fourier transform φ̃(q), then the
first member of the BBGKY hierarchy; the force Eq. 2.2 can be expressed as

φ̃(q)

kB T
= − Ẽ(q)

S(q)
(3.7)

where S(q) is the liquid structure factor, S(q) – 1 being the Fourier transform (FT) of
g(r)− 1 ≡ h(r), the total correlation function. It only remains then to define Ẽ(q) in
Eq. 3.7 as [25]

Ẽ(q) = h̃(q)+�(q) (3.8)

where h̃(q) is the FT of the total correlation function h(r). The summation� in Eq. 3.8
can be written in terms of g3 and φ, where g3 is usefully separated into the form [25]

g3(r12, r32) = 1 + h(r12)+ h(r32)+ h(r31)+ t (r12, r32) (3.9)
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Fig. 1 Scaled form of function
Ẽ(q) for coupling strength
� = 2 describing three-particle
correlations in the
two-dimensional one-component
plasma model (Redrawn from
Golden et al. [25]). Solid curve
exact result. Dashed curve HNC
approximation. Dot-dash curve
random phase approximation

Then with t̃ denoting the FT of t in the above Eq. 3.9 one has

�(q) = 1

V
�k

q · k

q2 βρφ̃(q)
{

h̃ (|q − k|)+ ρ t̃ (q − k, k)
}
, (3.10)

with β = (kB T )−1. It is important to reiterate that given the assumptions made about
the existence of FTs, Eqs. (3.7), (3.8) and (3.10) represent an exact solution of the
BBGKY Eq. 2.2.

Returning briefly to the specific case of the 2D OCP, one can clearly plot the exact
form of Ẽ(q) in this model for coupling strength � = 2 and the result is shown in
Fig. 1. The full curve represents the exact form of Ẽ(q) describing three-particle cor-
relations in this model. The dashed curve shows, for comparison the hypernetted chain
approximation (denoted by HNC), namely

ẼHNC(q) = −[S(q)− 1]2 − Ũ (q)

kB T
S(q). (3.11)

where Ũ (q) is the FT of the potential of mean force U (r) in Eq. 2.2. While ẼHNC(q)
is a great improvement on the so-called random phase approximation (RPA) given by

ρ ẼRPA(q) = ρh̃(q) = S(q)− 1, (3.12)

which is also plotted in the dot–dash curve of Fig. 1, ẼHNC(q)does not yield the correct
limit of Ẽ(q) at large q for this example of the 2D OCP.

Finally, in this same statistical–mechanical model, based on the initial assumption
of a many-body force field as a sum of central pair interactions, one can construct the
function Ẽ(q) as a function of q in atomic units as in Fig. 2 for liquid Na just above
the freezing point. The input is the pair potential φ(r) obtained from electron the-
ory by Perrot and March [12] plus the experimental liquid structure factor S(q) from
Greenfield, Wellendorf and Wiser [26]. Thereby, the three-particle correlation func-
tion g3 becomes quantitatively accessible, though numerically rather than analytically
because of the experimental input of S(q) into Eq. 3.7.
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Fig. 2 Scaled form of function
Ẽ(q) describing three-particle
correlations in liquid metal Na
near freezing (Redrawn from
Golden et al. [25]) Wave number
k is in atomic units

4 Quantal canonical density matrix and Slater sum for non-interacting uniform
electron liquid made inhomogeneous by switching on a one-body potential
V(r)

Since the early studies of March and Murray [27,28] there has been considerable
interest in a quantal free Fermion homogeneous assembly perturbed by a one-body
potential V (r). With a total Hamiltonian which is a sum over N particles of a one-body
form

Hr = − η2

2m
∇2

r + V (r) (4.1)

the canonical density matrix C(r, r′, β), which is the main tool employed in this
section, along with its diagonal element S(r, β):

S(r, β) = C(r, r ′, β)|r ′ = r , (4.2)

the so-called Slater sum, is defined by

C(r, r ′, β) =
∑

alli

exp(−β ∈i )ψi (r)ψ
∗
i (r

′). (4.3)

Hereψi (r) and ∈i are respectively the Schrödinger wave functions and corresponding
eigenvalues generated by the one-body Hamiltonian H. As shown in the early study
of Bloch [29], the canonical density matrix C(r, r′, β) satisfies the partial differential
equation

HrC = −∂C

∂β
, (4.4)
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and obviously the completeness condition satisfied by the wave functions must be
used as a ‘boundary condition’, namely

C(r, r ′, β)
∣
∣
β=0 = δ(r − r ′). (4.5)

March and Murray rewrote Eqs. (4.4) and (4.5) in the form of an integral equation:

C(r, r ′, β) = C0(r, r
′, β)−

∫
dr1

∫ β

0
dβ1C0(r, r1, β − β1)V (r1)C(r1, r

′, β1),

(4.6)

where C0 is the homogeneous solution of Eq. 4.4, namely

C0(r, r
′, β) = 1

(2πβ)3/2
exp

[

−
∣
∣r − r ′∣∣2

2β

]

, (4.7)

atomic units m = h̄ = e being employed here and below.
While March and Murray showed that by insertion of C = C0 in the integral term

in Eq. 4.6 in lowest order the infinite series in Eq. 4.9 below could be established, we
shall also focus below on specific solutions for chosen V (r), namely the Coulomb
potential −Ze2/r and the case of harmonic confinement, the latter being of consider-
able interest currently in connection with experiments on cold confined Fermion gases
[30].

What will be one important focal point below will be to show that for some cases,
one can bypass the solution for C(r, r′, β) and work directly with the Slater sum S(r,
β) in Eq. 4.2, which evidently then yields the partition function, denoted by Z(β)
below, as

Z(β) =
∫

S(r, β)dr. (4.8)

But before that, let us summarize briefly below the important iterative solution to all
orders in V (r) of the integral Eq. 4.6, the lowest order result being the free electron
form C0 in Eq. 4.7. The result is readily written as an infinite series:

C(r, r0, β) =
∞∑

j=0

C j (r, r0, β) (4.9)
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where C j (r, r0, β) can be generated quite explicitly in the form

C j (r, r0, β) = (2πβ)−3

j∫ j∏

l=1

{

−dr l
V (r l)

2π

}
⎛

⎝
j+1∑

l=1

sl

⎞

⎠

× exp

⎧
⎪⎨

⎪⎩
− 1

2β

⎛

⎝
j+1∑

l=1

sl

⎞

⎠

2
⎫
⎪⎬

⎪⎭
/

j+1∏

l=1

sl (4.10)

and sl = |r l − r l−1|, r j+1 = r1.
As an immediate example of Eqs. (4.9) and (4.10) we note that they can be summed

for the harmonic potential V = 1
2 kr2 ≡ 1

2 mω2r2, β = (kB T )−1 to get in particular
the Slater sum S(r, β) ≡ C(r, r′, β)|r′=r as [3]

S(r, β) =
(

m

2π h̄

)3/2 [
ω

sinh h̄ωβ

]3/2

exp

(

−m

h̄
ωr2 tanh

(
1

2
h̄ωβ

))

. (4.11)

Below we shall give particular attention to the form of differential equation one can
expect S(r, β) to satisfy, taking Eq. 4.11 as starting point.

4.1 Form of differential equation expected for the Slater sum S(r,β)

In the early work of March and Murray [28] it was shown, via in fact the radial
Schrödinger equation for central field problems, that in one dimension, with S ≡
S(x, β), there is a quite general partial differential equation for an arbitrary form of
potential V(x). This reads [31]

h̄2

8m
S′′′(x, β)− ∂2

∂β∂x
S(x, β)− V (x)S′(x, β)− 1

2
V ′(x)S(x, β) = 0 (4.12)

For the central field result (4.11) with harmonic confinement, the partial differential
equation satisfied by S(r, β) is readily verified, after some modest manipulation, to be

h̄2

8m

∂

∂r

(
∇2S

)
−
[
∂

∂β
+ V (r)

]
∂S

∂r
− 1

2

∂V

∂r
S = 0 (4.13)

where V = 1
2 mω2r2. Unfortunately, Eq. 4.13 is specific to harmonic confinement, the

corresponding result for the bare Coulomb potential −Ze2/r being known from the
independent studies of Cooper [32] and Pfalzner et al. [33] to have the form

r2

4Z

∂3

∂r3 S(r, β)+ r

Z

∂2

∂r2 S(r, β)+ 1

2Z

∂

∂r
S(r, β)+ 2r

∂

∂r
S(r, β)+ S(r, β)

= 2r2

Z

∂2

∂r∂β
S(r, β) (4.14)
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Unfortunately, to date, no known solution of Eq. 4.14 exists, to the knowledge of the
present authors, of comparable elegance to the Slater sum (4.11) for harmonic con-
finement. There is, however, available for the Coulomb potential the important, albeit
somewhat complicated, infinite series form derived by Blinder [34], and displayed in
Eq. 3.1 of that reference. However, Whittaker, Laguerre and Hermite functions are all
involved in Blinder’s infinite series, which has not, as yet, found significant practical
applications. It is therefore important that Eq. 4.14 be studied further, for compact
solutions analogous to Eq. 4.11 for the harmonic cases.

4.2 Some limiting results for the Slater sum in d dimensions

To conclude this section, we effect some generalizations of the above results for the
Slater sum to general dimensionality d.

Returning to the definition of the quantal canonical density matrix C(r, r′, β) in
Eq. 4.3, let us note that adding a constant potential V shifts the eigenvalues ∈i by this
constant, but does not change the eigenfunctions. Thus, in the limit of slowly varying
potential V(x) we can evidently write, using Eq. 4.7 with r′ = r, but now modified to
one dimension:

S(x, β) = 1

(2πβ)1/2
exp(−βV (x)), (4.15)

Forming the derivatives appearing in the exact one-dimensional Eq. 4.12 shows that
Eq. 4.15 is a solution provided S′′′(x, β) is neglected. In fact, Eq. 4.15 is of Thomas-
Fermi-like form, and yields the ground-state density n(x) as [35]

n(x) = constant[µ− V (x)]1/2, (4.16)

since n(x) is, in fact the inverse Laplace transform of S(x, β)/β with respect to β.
As Lehmann and March [36] noted, the analogue of Eq. 4.15 for slowly varying

potential in d dimensions reads

S(r, β) = 1

(2πβ)d/2
exp(−βV (r)), (4.17)

Taking the case of d-dimensional harmonic confinement, the three-dimensional result
(4.11), first in fact obtained in three dimensions in the studies of electrons in a constant
magnetic field by Sondheimer and Wilson [37], has the d-dimensional generalization
[38]

S(r, β) =
(

mω

2π h̄

)d/2 [ 1

sinhd/2(βh̄ω)

]

× exp

[

−mωr2

h̄
tanh

(
βh̄ω

2

)]

(4.18)
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This can be shown to satisfy the partial differential equation

h̄2

8m

∂

∂r
[∇2S] −

[
∂

∂β
+ V (r)

]
∂S

∂r
− (d − 2)

2

∂V

∂r
S = 0 (4.19)

where V (r) now denotes 1
2 mω2r2. Eq. 4.19 gives back Eq. 4.13 in the special case

when d = 3.
In subsect. 4.3, we record two further limiting cases, for which the Slater sum can

be calculated analytically.

4.3 Two further limiting cases in which the quantal canonical density matrix can be
calculated from the statistical–mechanical model under discussion

The first example below is motivated by the evidence that if solid C60 is doped with an
alkali metal, say K , the donated electrons are rather localized near the surface of the
‘almost spherical’ C60 molecule [39]. This prompted the work by Holas and March
[40] on the quantal canonical density matrix for free electrons moving in a spherical
surface. The input into Eq. 4.3 for C(r, r′, β) was therefore the energy levels and cor-
responding eigenfunctions for electrons confined to move on the surface of a sphere
but are otherwise free. The result, which must satisfy the Bloch Eq. 4.4, is given for
sphere radius R, by, with S = ∣∣r − r ′∣∣:

C
(
r, r ′, β

) ≡ C(S, β)

= (4πR2)−1
∞∑

l=0

exp[−βERl(l + 1)](2l + 1)Pl

(

1 − 2

{
S

2R

}2
)

(4.20)

This then is the exact quantal canonical density matrix for free electrons moving on
a spherical surface (compare fullerene) of radius R, where ER is the characteristic
energy unit given by

ER = h̄2

2m R2 . (4.21)

The final example in this section connects with the reference to the study of Sond-
heimer and Wilson [37] in a magnetic field. Generalizing this work, Amovilli and
March [41] have obtained results for the Slater sum representing the H+

2 molecular
ion in an intense magnetic field, such as exists say, at the surface of some neutron stars
but in H+

2 applied along the internuclear axis. In the limit as the magnetic field strength
B tends to infinity, H+

2 in such a field is characterized by a specific one-dimensional
Hamiltonian [42].

The major result of Amovilli and March [41] is to obtain an exact analytic form
of the canonical density matrix C(x, x ′, β) for this one-dimensional Hamiltonian, in
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their equation (11). The Slater sum S(x, β) is also given analytically in their equation
(28). This is in the form of an infinite series in which the general term is known.

5 Conjectured exact solution of the 3D Ising model

The Ising model can be applied to understand a group of ‘universal’ critical phenomena
at/near the critical point of a second-order (continuous) phase transition in various sys-
tems such as magnets, order-disorder alloys, liquid helium, liquids, glassy substances,
etc. The difficulties in solving explicitly the 3D Ising model are topologic, which orig-
inate from the crossover of the nonplanar bonds (ie high-order terms in the transfer
matrix). Recently, one of us (Z.D.Z.) proposed two conjectures [4], ie an additional
rotation in the fourth curled-up dimension and three weight factors on the eigenvec-
tors, to serve as a boundary condition to overcome the topologic difficulties of the 3D
Ising model. The partition function, and thermodynamic consequences such as the spe-
cific heat, the spontaneous magnetization and the true range κx of the correlation, and
the correlation functions of the 3D simple orthorhombic Ising model were obtained,
based on the two conjectures. The critical temperature of the simple orthorhombic
Ising lattices was determined by the relation of K1 K ∗ = K1 K2 + K1 K3 + K2 K3,
where Ki = β Ji (i = 1, 2, 3) and K ∗ is defined by e−2K1 ≡ tanh K ∗. The golden ratio

xc = e−2Kc =
√

5−1
2 (or silver ratio xc = √

2−1) is the largest solution for the critical
temperature of the 3D (or 2D) Ising systems, which corresponds to the most symmetric
simple cubic (or square) lattice. The critical exponents for the 3D Ising model were
putatively determined to be α = 0, β = 3/8, γ = 5/4, δ = 13/3, η = 1/8 and
ν = 2/3, satisfying the scaling laws. The conjectured exact solutions were judged
by several criterions, and compared with those of approximation methods and exper-
imental findings.

After that, there have been two rounds of exchanges of Comments/Responses/
Rejoinders [43–48]. The progresses have been made further, thanks to these exchanges.
In Ref. [44], Conjecture 1, regarding the additional rotation, was understood further
as performing a transformation for smoothing all the crossings of the knots, while
the weight factors in Conjecture 2 were interpreted as a novel topologic phase. The
partition function of the 3D simple orthorhombic Ising model, being dealt within a (3
+ 1)-dimensional framework with different weight factors on the eigenvectors, can be
written as [4,44]:

N−1 ln Z = ln 2+ 1

2(2π)4

π∫

−π

π∫

−π

π∫

−π

π∫

−π
ln
[
cosh 2K1 cosh 2(K2+K3+K4)

− sinh 2K1 cosω′ − sinh 2(K2+K3+K4)

× (wx cosωx+wy cosωy+wz cosωz)
]
dω′dωx dωydωz (5.1)

with K4 = K2 K3/K1, and the weight wx = 1, while the details of the weights wy

andwz were revealed in Appendixes of Ref. [4], to fit well the high-temperature series
expansion at/near infinite temperature. However, the weight factors wx , wy and wz in

123



534 J Math Chem (2010) 47:520–538

Eq. 4.1 can be replaced by |wx | cosφx , |wy | cosφy and |wz| cosφz , respectively [44],
since only the real part of the phase factors appears in the eigenvalues. This replace-
ment is realized by generalizing the weight factors in the eigenvectors in eqn (33) of
Ref. [4] as complex numbers |wx |eiφx , |wy |eiφy , and |wz|eiφz with phases φx , φy, and
φz [44].

The spontaneous magnetization I for the 3D simple orthorhombic Ising lattices
was obtained as [4]:

I =

⎧
⎪⎪⎨

⎪⎪⎩

[(
1−x2

1+4x1x2x3x4−x2
2 x2

3 x2
4+x2

1 x2
2 x2

3 x2
4

) (
1−x2

1−4x1x2x3x4−x2
2 x2

3 x2
4 + x2

1 x2
2 x2

3 x2
4

)] 1
2

(1 − x2
1 )(1 − x2

2 x2
3 x2

4 )

⎫
⎪⎪⎬

⎪⎪⎭

3
4

(5.2)

where xi = e−2Ki (i = 1, 2, 3, 4). It was found that the 3D- to 2D-crossover phe-
nomenon differs with the 2D- to 1D-crossover phenomenon and there is a gradual
crossover of the exponents from the 3D values to the 2D ones. However, it is under-
stood in Ref. [49] that if one kept changing the parameters Ki within the 3D zone in
Fig. 4 of Ref. [4], which is close to the most symmetric simple cubic lattice, the 3D-
to 2D-crossover would no exist. It can be seen more clearly in a figure represented
in the K1 − K2 − K3 parametric space [49]. When one decreases the parameters Ki

while keeping K1 = K2 = K3 = K , one goes along the 〈111〉 axis from (1,1,1) to the
origin. This case always corresponds the (1, 1) point (the star in Fig. 4 of Ref. [4]), so
the 3D critical behavior is hold until the origin at which the system becomes the 0D
(or 1D). This is similar with the 2D- to 1D-crossover phenomenon. Nevertheless, if
one changed the parameters Ki to cross the boundary curves in Fig. 4 of Ref. [4], the
3D- to 2D-crossover would appear.

As pointed out clearly in Refs. [44,47], all the rigorous theorems in Ref. [50–58]
for proving the convergence size of the high-temperature expansion series have been
proved only for β ≡ 1/(kB T ) > 0, i.e., T < ∞. Exactly infinite temperature has been
never touched in these theorems, since there is a possibility of the existence of a phase
transition at β = 0, according to the condition z ≡ exp(−2βH) = 1 in the Yang-Lee
Theorems [59,60]. The difficulties in the theorems are seen as follows [49]: Setting
β = 1 equalizes to T = 1/kB �= ∞. Thus, the necessary and sufficient condition for
using the dimensionless parameters Ki = β Ji , (i = 1, 2, 3) and h = βH and setting
β = 1 is β �= 0. On the other hand, it is to be expected that the exact solution of
the 3D Ising model does not reproduce term by term the well-known low-temperature
series that is divergent [4,44,47]. The lack of information of the global behaviour of
the 3D Ising system is the root of such divergence in the well-known low-temperature
series [47]. The trouble with it may originate from some difficulties in the foundation
of statistical mechanics. It was understood [47] that the lack of ergodicity of the 3D
Ising model would lead to the time average being different from the ensemble average,
which may not contain complete information of the system. Neglecting the difference
between the two averages may work well in other models with dimensions D �= 3, but
cause serious troubles in the 3D Ising system because of its global topologic behav-
iour and geometrical structure [4,44]. Since the well-known low- and high-temperature
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series of the 3D Ising model might not account properly for the time average of the
system, they might be invalid at finite temperatures. Therefore, the well-known low-
and high-temperature series cannot serve as a standard for judging the putative exact
solution of the 3D Ising model. The conjectured solution can be utilized to understand
critical phenomena in various systems [61,62], while the conjectures are still open to
rigorous proof. It is to be expected that one has to utilize the knowledge of the knot
theory [63] to achieve this rigorous proof.

6 Summary and proposed future directions

In this article, we have emphasized first that two classical statistical–mechanical mod-
els are amenable to exact treatment. The first, with a many-body force field which can
be realizably modeled in a liquid like argon by central density-independent pair poten-
tials, is then amenable to what is, in principle, an exact solution. However, to work
with the lowest member, shown in Eq. 2.2, of the BBGKY hierarchy, it is then essential
to bypass approximation of the three-body correlation function g3 by having recourse
to computer simulation methods [7]. However, in the second statistical–mechanical
model, progress can be made analytically with g3 without approximation, for a two-
dimensional one-component plasma with ln (ri j ) interparticle interaction.

Attention is next focused on a quantum–mechanical model in which initially uni-
form non-interacting electrons are rendered inhomogeneous by the switching-on of a
one-body potential V (r). The quantal canonical density matrix of the resulting Hamil-
tonian satisfies the so-called Bloch equation. What is the prime focus here however is
the diagonal of this canonical density matrix, namely the so-called Slater sum S(r, β)
[3]. This quantity can be generated by perturbation theory to all orders in V (r) [27].
But to date, the resulted series has only been summed exactly for very specific choices
of V (r). Hence, attention is devoted here to the question of the differential equation
satisfied by S(r, β) for specific choices of V (r). This work has a generalization to
quantum–mechanical assemblies of interacting particles given in the early study of
Green [64], but so far applications are lacking.

The final statistical–mechanical model chosen here is that corresponding to the
3D generalization of the Ising model. This model but in 2D, was solved exactly in
the pioneering work of Onsager [65], and one of us [4] has, by making two, as yet
unproved conjectures, proposed a form of partition function set out in Sect. 5 of the
present article. This, additionally, led to proposals for the critical exponents of the 3D
Ising model, which have been utilized by subsequent workers [61,62].

As to future directions, there is ample opportunity, following particularly the the-
oretical study of Golden et al. [25], and the experimental work of Johnson et al. [66]
to generalize the considerations of Sect. 2 to simple liquid metals like Be and Mg,
for which the density-independent pair potential of an insulating liquid like Ar now
becomes φ(r, ρ): ie density dependence enters for such liquid metals as an essential
feature. Following Refs. [12] and [13], electron theory now provides a tractable route
for specific metals to yield φ(r, ρ).

Turning to the quantal Slater sum S(r, β) focused on in Sect. 4, much progress has
proved possible for a Hamiltonian which is of one-body potential form. Appealing
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partial differential equations now exist for specific forms of the one-body potential
V (r), and further work is called for with the aim of replacing the known infinite series
in powers of V (r) by a partial differential equation for S(r, β) which is characterized
solely by V (r). Finally, much remains to be achieved on the 3D Ising model. Thus,
attempts must be made to understand the basis for the two conjectures on which the
presently proposed partition function rests. Also, inequalities for the critical exponents
would be invaluable, with which to confront the critical exponents proposed by one
of us (Z.D.Z.). As in the statistical–mechanical models discussed in Sect. 2, com-
puter simulation should be invoked whenever it proves possible thereby to establish a
well-nigh exact (to chosen numerical accuracy) solution of a specific, chosen model.
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Appendix

Collective coordinates in Ising systems

Early work of Bruce [67] was concerned with elucidating the nature of short-range
order at criticality as well as exposing the character of the collective excitation spec-
trum in the critical region. In view of the focus on the 3D Ising model in the main text,
it is relevant to summarize the findings of Bruce in this Appendix.

Kadanoff [68] surveys the concept of universality in critical point phenomena. In
the vicinity of a second-order (continuous) phase transition, an assembly exhibits
properties which can be characterized by a group of ‘universal’ quantities, which are
independent of the fine details of the microscopic interactions. For example, the criti-
cal exponents discussed in the main text for the 3D Ising model are in this group, as
are correlation functions.

Bruce made a start on the identification of the universal aspects of ordering coor-
dinate configurations underlying critical point behavior. The study of Bruce followed
Kadanoff [69] in treating the collective critical behavior of the ordering coordinate.
Kadanoff described this using a set of block coordinates. Thus the block coordinate
uL (x) gives the instantaneous value of the local coordinates spatially averaged over
a block having linear dimension L centred on the position x. The critical form of
such a block coordinate is then usefully characterized by its probability function,
denoted by PL(uL). This probability has been studied in the notable work of Pata-
shinskii [70] and of Jona-Lasinio [71]. Bruce develops a renormalization group (RG)
argument [67], following Patashinskii [70], which points to a limiting form P∞ of
the function PL . This quantity P∞ now depends only on block size L through the
ratio of L to the correlation length ξ , when both L and ξ are large compared with
a characteristic interatomic spacings. Bruce presents explicit calculations which bear
this out [67]. Wilson’s recursion formula [72] was used to determine the form of
P∗ for 3D and 2D, but the latter result was substantiated by a calculation based on
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exactly established properties of the planar Ising model. We asserted in [73,74] that
the critical exponents β, γ and δ given experimentally for CrBr3 [75,76] agree to
excellent accuracy with the conjectured ones for the 3D Ising model [4]. Furthermore,
the critical exponent β = 0.38, obtained experimentally for bulk Ni [77], is very close
to the Zhang’s theoretical value β = 3/8 [4]. It is expected that the conjectured exact
properties of the 3D Ising models obtained in Ref. 4 will benefit to investigate the
probability density functions for collective coordinates in the 3D Ising systems, as
Bruce did for the 2D systems [67].
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